WebTool Hacking HOWTO

WebTool Hacking HOWTO

Revision History
Revision $Revision: 1.1 $ $Date: 2006/01/03 17:19:58 $ Revised by: pax

Table of Contents

R 1 7o o (8 ox 1 o] o KPP URT PP 1
1.1. About the Guardian Digital WEDTOOcoi ittt e e e e e e e e s bbb e e e e e e e e e e e e e nneanaeees 1

2 S = To (01T T 41T o £SO PP PETT TR 1

2 B L= VLYo o KT A = PP TP PUPUPPRPRPPRR 3
2.1. Reading and WHIHING FlES.... ..ottt oo oottt et e e e e e s bbbttt e e e e e e e e e e annbb e e e e eeeaeeeannnbsbeees 3

2.2. Writing to the WeDTOO! AUIE LOGueeeiiieieeiiiite ettt ettt e e e e e bbb e e e e e e e e e s e sabbe e e e e eaaaeeeannnnnbeees 3

2.3. PAgE OULPUL FUNCLIONS ...ttt ettt e oottt e e e e e o4 e okttt ettt ee e e e e e R e s bebe e e e e e e e e e e e annbbeeeeeaeaeaaannnnbnneees 3
2.3.1. HTML WiQEE FUNCHIONS.......eiiieii ittt oottt e ettt e e e e a4 e e o e bbbt e et e e e e e s mnbabb e et e e e aeeaeesannbnbneeaaeaaeas 3

2.3.2. TEMPIALNG FUNCLIONS ...ttt oottt e e e e e s e e ek bbbt e e et e e e e e s nsbabbe et e e eaeeaeeaannbnbreeaaaaaeas 4

PR T T = o (o gl U Vo 1o L PR PRR 4

A =Ty (o) 1T o = V1] o 0 SR 4

2.5. Loading Other MOAUIE LIBFATIESuviiiiiieie ittt ettt e e e e s e st e et e e e e e st e e e e e e e s e aasnasbeaeraaaeeeeeannnnnnnnees 4
2.5.1. StOPPING @Nd STArtiNG SEIVICES.uuuuiiiiiie et e e ieiiieeir et e e et e e er e e eeee s e e e s taareeeteaeasaaatantaarreeeeesseansnnnrnrreeeeees 5

2.5.2. User ACCOUNt MANIPUIBLIONcooiiiiiiiieiee e e e e e e e e s e r e e e e e s e e et r e e e e e e e e s ntanba e e e e eeeeseesannntnneneeeees 5

T Y oo [0 L= @ o] g a0 To] a =T o] £ PRSPPI 7
G 0 I VT To 1] 1= I o > SRS 7

G O] I8 1 o] £ SRS 7

I T I B 1= o] = Y O € IS T) PR 7

I o o U o TN @ IS o] o] £ PSP 7

I T T A o T O € ST) PP 7

G R T 1= 03T o] = (RS 8

I IR T o [=T L= 1o TP PR 8

3.5, ACCESS CONIOI FIES ...ttt oottt e e oo e oo ettt ettt et ee e e e e aa R b b be bttt e e e e e e e e e annbbbeeeeaeeeeeeannnnbsneees 9

o L] =X o gl Y[To [(3 AN E | Lo PP URP R OPPPP 11
4.1, WIIING NEW MOAUIES ...ttt e oottt ettt e e e e oo ettt et e e e e e e e e e eanbbb b et e e e e e e e e aanbebbbeeeeaeeeaanannes 11
1Y (ST 1= T= ST TR TS UOPUPPRRTT 11

G TR |V =T o 11 L TP U RO RUTPPRP PP 12

4.4. Module CoNfIQUIALION FIIESeeiiiiii ettt ettt e e e oottt e e e e e aa s st bbe bt e e e e e ae e e e e nbsbbeneeaaaeeaanannns 12

A.5. SAMPIE MOUUIE ...ttt e oo oo oot e et e et e e e e oo et et bt et e e e e e e aa e oannbbbeeeeeeaeaeaannbebbeeeaaaeaeaannnes 12

F N T Yo U (o <L S O PP PP PP UUPPPUPPPPPPTPRON 13

WebTool Hacking HOWTO

Chapter 1. Introduction

This document is intended as a guide to writing additional modules for the Guardian Digital WebTool, a component of
EnGarde Secure Linux. It will detail the WebTool API, the components of WebTool modules, and how to create a new
module for the WebTool.

1.1. About the Guardian Digital WebTool

The Guardian Digital WebTool is a web based application that is the main interface used to configure and administer an
EnGarde Secure Linux system. It runs as a service on an EnGarde system and is accessed through a standard web browser
using the HTTPS protocol on port 1023.

1.2. Requirements

This document assumes a familiarity with Perl CGI programming techniques, understanding of HTML coding, and basic
Linux systems administration knowledge. It is intended for developers who wish to extend and customize the WebTool, and
is not written to document the use of the existing modules of the WebTool. A familiarity with Object Oriented programming
techniques will also be helpful.

Chapter 1. Introduction

2 WebTool Hacking HOWTO

Chapter 2. The WebTool API

The WebTool API contains a variety of functions useful to a module developer. This chapter will detail some of the more
common functions, but is not intended to be an exhaustive reference. You should refer to the source code of the WebTool.pm
and Ul.pm modules located under /lib in your WebTool directory.

2.1. Reading and Writing Files

A very common task for WebTool modules is the reading and writing of configuration files. The WebTool API provides a
read_file function accepting a file path as a parameter, returning an array of the lines in the file, and a write_file function
that accepts a file path and and array of lines to write to the file.

use WebTool ;

open file and read contents into @
nmy @ = WebTool::read_file("/etc/sanple.conf");

mani pul ate file contents stored in @ here

wite file back based on new contents of @
WebTool : :wite_file("/etc/sanple.conf", @);

2.2. Writing to the WebTool Audit Log

In order to aid in troubleshooting and for security auditing purposes, it is recommended to output log lines whenever the
WebTool is used to commit a change. This lodfile is located at /var/log/webtool-audit.log and can be written to using the
audit function. The logging module of the WebTool can be used to display and search this lodfile.

use WebTool ;

audit (" Created a new user: $usernane");

2.3. Page Output Functions

Page output functions are the bulk of the WebTool API. These functions are used to create HTML tags for form entry, as well
as controlling the template system. They are methods of the page object which is an instance of either the WebTool::Ul::Std
class or the WebTool::Ul::Popup class depending on whether the page is a normal page or a popup window. The main
differences between the two are header and footer layout and the presence of a menu, programmatically they behave very
much the same.

use WebTool :: Ul :: Std;
ny $page = new WebTool :: Ul :: Std;

2.3.1. HTML Widget Functions

The WebTool API contains a variety of functions designed to output HTML widgets such as textboxes, selects, checkboxes,
and the like. Creation of links and submit buttons is also performed by calling WebTool Ul functions, and different functions
exist depending on if the link or submit button launches a popup window or not.

Chapter 2. The WebTool API

These functions can be found in the /lib/WebTool/Ul.pm library under your webtool directory.

2.3.2. Templating Functions

The WebTool uses the Perl HTML::Template library to separate code from presentation, and provides methods of the page
object to perform template related functions. See Appendix A for links to more information about the HTML::Template library.

use WebTool :: Ul ::Std;
ny $page = new WebTool :: U ::Std;
ny $tnpl _file = "tenpl ates/index.tnpl";

$page->t npl | oad($tnpl file);
$page- >set _page_title("My Title");
$page- >t npl _set ("sanpl e_var" => "MW Value.");

$page->draw) ;

2.3.3. Error Functions

The err method of the page object is used within action CGI scripts (see Section 3.2.3) to launch a javascript popup noting
an error and return to the form page that called the action CGI.

ny $page = new WebTool :: Ul :: Popup;
nmy % n = WebTool :: U ::process_forn();

if (!$in{"required field }) { $page->err("The Required Field is required."); }

2.4. Performing Translations

It is recommended when writing WebTool modules to place all strings in a separate language file for easier localization. See
Section 3.4 for details on the format of these files.

The tmpl_translate method of the $page object is used to perform translations. If you define a template variable in your
template to begin with a lang_ prefix, it will be looked up in the appropriate language file and replaced in the template
automatically, and tmpl_translate is not required to be called. See Section 3.3 for more information on how templates work.

use WebTool :: Ul ::Std;
ny $page = new WebTool :: Ul :: Std;

ny $title = $page->tnpl _translate(’indextitle’);

2.5. Loading Other Module Libraries

A very important capability of the WebTool is the ability to load libraries from other modules. This allows module authors to
leverage code already written for use in another module, promoting code re-use and simplifying the WebTool as a whole.
The load_module function is provided for this purpose. It must be called from within a BEGIN block and before any other
code is run as shown below, or it will throw errors at runtime.

4 WebTool Hacking HOWTO

Chapter 2. The WebTool API

use WebTool ;

BEG N { WebTool : : | oad_nodul e(’ services’); };

When writing a module, you should review the available modules and see if any of your required functionality is included
in their library modules. Code re-use should be a priority to keep the WebTool as lean as possible and prevent introducing
unnecessary bugs. Check the libraries of modules related to the action you are performing to see if a related function exists.
For example, if your module needed to perform a DNS related task, the named.pm library in the named module would be a
logical place to check for a function that performs your desired action.

2.5.1. Stopping and Starting Services

A common use for calling another module is in the loading of the services module to start, stop, and restart services on the
system. As an example, the code below will restart the dhcpd server if it is currently running on the system.

use WebTool ;
BEG N { WebTool : : | oad_nodul e(’ services’); };

ny $services = new services;
if ($services->current_state(’'dhcpd') { $services->restart(’ dhcpd); }

2.5.2. User Account Manipulation

Another common task requires the use of the users module to read or change user or group related information. The
following example would determine if a specified user exists on the system.

use WebTool ;
BEG N { WebTool : : | oad_nodul e(’ users’); };

ny $users = new users;
ny @serlist = $users->users_list();

foreach ny $u (@iserslist) {
if ($u->{"nane’} eq $testnanme) { return true; }

}

return fal se;

WebTool Hacking HOWTO 5

Chapter 2. The WebTool API

6 WebTool Hacking HOWTO

Chapter 3. Module Components

The WebTool is divided into modules, each of which has a narrowly defined area of responsibility, such as Apache config-
uration or displaying of logfiles. These modules are also divided into separate components, which will be detailed in this
chapter.

Modules are created within their own directory under the modules directory of the WebTool tree.

3.1. Module Library

Every module contains a module library named the same as the module directory, with a .pm extension. This library should
contain functions for every administration task the module performs. This library can be considered the module’s own API,
as it is the interface to the module from the rest of the WebTool.

Other WebTool modules can load and call this module. See Section 2.5 for eamples of how and why a module might need
to load and use another module’s library.

3.2. CGI Scripts

Every module contains at least one CGlI script called index.cgi. This is the main page of the module and will be displayed
when the module is chosen from a menu item. Additional scripts can be created if necessary to break the module’s func-
tionality onto separate pages and should be named based on their task.

3.2.1. Display CGI Scripts

Normal display CGls should use the WebTool::UI::Std class. This will ensure they contain the proper headers, footers and
menus.

use WebTool :: Ul ::Std;
ny $page = new WebTool :: Ul :: Std;

3.2.2. Popup CGI Scripts

Popup CGls are generally used for displaying information or allowing input of small forms. They should use the
WebTool::Ul::Popup class, which uses different headers and footers and does not contain a menu. Use the popup_link or
popup_button methods of your page object on the launching page to create the popup windows, see Section 2.3.1 for
more information.

use WebTool : : Ul :: Popup;
ny $page = new WebTool :: Ul :: Popup;

3.2.3. Action CGI Scripts

These are scripts whose purpose is to perform an action rather than display a page. Your form pages should post to an
action page to perform the required task, which will then redirect back to a normal page using either a close_popup or a
redirect function. The form script generally would be named with an edit_ or create_ prefix, while the associated action
script would be named with a do_edit_ or do_create_ prefix.

Chapter 3. Module Components

A typical action script uses the process_form function to gather the HTTP post variables from the previous page, validates
the input, calling the err function if any input is deemed invalid, performs the required task, then redirects or closes the

popup.

use WebTool :: Ul :: Popup;

ny $page = new WebTool :: Ul :: Popup;

ny % n = WebTool :: U ::process_forn();

if (!$in{"required_field }) { $page->err("The Required Field is required."); }
Do action here

$page- >cl ose_popup();
or if the calling formpage was not a popup :
WebTool :: Ul ::redirect(’index.cgi’);

3.3. Templates

Templates are stored in the templates subdirectory of your module directory. Template files should be named the same
as the CGl script that refers to them, with the extension changed to .tmpl. A template should exist for each CGI script in
your module, except the action CGls. They contain all the HTML code for the display of your module as well as special
HTML::Template tags which are placeholders for variables you can set using the WebTool's templating functions (see
Section 2.3.2).

There are several different HTML::Template tags that can be used. The <TMPL_VAR> tag replaces the tag with whatever
value was set for it using the tmpl_set function, but there are also special tags to provide if/felse branching and looping. See
Appendix A for links to more information about the HTML::Template library.

<TMPL_VAR> tags are assigned a name in the template file. If this name begins with a lang_ prefix, it is automatically
replaced by the matching entry in the modules appropriate language file. No English strings should ever be present in a
template file, they should be entered in the language file and called with a <TMPL_VAR> tag.

Templates should use <DIV> tags and follow the layouts and CSS styles established by the existing WebTool modules.

<Dl V CLASS="pageEntry">
<Dl V CLASS="pageEntryTitle">
<TMPL_VAR NAME="| ang_i ndextitle">
</ Dl V>
<Dl V CLASS="pageEntryContent">
<TMPL_VAR NAME="| ang_i ndexi ntro">
</ Dl V>
</ Dl V>

3.4. Language Files

Language files are used for WebTool localization. They consist of a list of named tags, each followed by an equals sign
and the string to replace the tag with. They are stored in the lang subdirectory of the module directory, and named with
the appropriate two letter language code, i.e. en for English or fr for French. Currently the WebTool only contains English

8 WebTool Hacking HOWTO

Chapter 3. Module Components

translations, but French is supported in the code, and other languages can be added. Please contact the WebTool devel-
opers using the EnGarde Users mailing list (see Appendix A) if you would like to contribute localization help in any other
language.

i ndextitle = DHCP Server Managenent

i ndexintro = Wel conme to the DHCP Server Managenent nodule. This nodul e allows you
to set up this systemfor use as a DHCP server, which will assign IP
addresses to other systens.

3.5. Access Control Files

Access Control Files are used by the WebTool to constrain access to certain modules from restricted WebTool users. The
Access Control file is stored in the your module directory and is always named .acl. It consists of a listing of the CGlI scripts
belonging to the module, each followed by two four digit module codes (assigned in the webtool module, see its source code
for further details) and a 1 for pages that only require read access or a 2 for pages which require read and write access.
Generally, the action CGlI scripts are assigned a 2 since they are the scripts that make actual changes, other CGI scripts
are assigned a 1.

The four digit module codes are assigned by Guardian Digital. Please contact Guardian Digital via the EnGarde Users
mailing list (see Appendix A) if you need to be assigned a code for your module.

--- BEGAN ---

0020 0290 POP/ | MAP Server Managenent

--- END ---

#

i ndex. cgi 0020 0290 1
edit_cert.cgi 0020 0290 1
do_edit_cert.cgi 0020 0290 2
do_edit_interface. cgi 0020 0290 2

WebTool Hacking HOWTO 9

Chapter 3. Module Components

10 WebTool Hacking HOWTO

Chapter 4. Notes For Module Authors

This chapter contains notes and other miscellaneous information useful to module authors.

4.1. Writing New Modules

When writing a new module, you should try to adhere to the way existing modules are laid out and constructed. There is
no better documentation than the source code itself, so study and dissect the existing modules carefully before attempting
to write your own from scratch. Experiment with changing existing modules to see how the changes affect the module
behavior, and be sure to familiarize yourself with the API functions and use them whenever possible to avoid duplication of
effort.

4.2. Style Sheets

The WebTool uses CSS for all styling and layout. Some WebTool pages use a single column layout, while others are divided
into left and right columns. This layout is specified in the WebTool CSS file, located at /templates/webtool.css. You should
refer to the existing template files for examples of how to declare your <DIV> tags for each type of layout.

Blocks of HTML should be declared as displayed below. First a pageEntry class DIV tag, followed by a pageEntryTitle DIV
tag containing the title of the block, then a pageEntryContent DIV tag containing your content, with tables enclosed by a
popupEntryWhite DIV tag. Tables should always be assigned a listing class, and any table header rows should be assigned
a listing-title class. Following these guidelines will ensure that your module adheres to the look and feel of the existing
modules, which helps usability and maintains a consistent experience within the WebTool.

<Dl V CLASS="pageEntry">
<Dl V CLASS="pageEntryTitle">
<TMPL_VAR NAME="| ang_i ndextitle">
</ Dl V>
<Dl V CLASS="pageEntryContent">
<TMPL_VAR NAME="| ang_i ndexi ntro" >
<DI V CLASS="popupEntryWite">
<TABLE W DTH="100% CLASS="1listing">
<TR CLASS="listing-title">
<TD>Header 1</ TD>
<TD>Header 2</TD>
</ TR>
<TR>
<TD>Data 1</ TD>
<TD>Dat a 2</ TD>
</ TR>
</ TABLE>
</ DI V>
</ Dl V>
</ Dl V>

For pages with a multi-column layout, use a pageEntryColumn class rather than pageEntry, with either a pageEntryLeft or
pageEntryRight DIV within it, as seen below.

<Dl V CLASS="pageEnt ryCol um" >

<Dl V CLASS="pageEntryLeft">

11

Chapter 4. Notes For Module Authors

<Dl V CLASS="pageEntryCol umTitle">Left Colum Title Here</ Dl V>
<DI V CLASS="popupEntryWite">
<Dl V CLASS="pageEntryContent">
Left Col um Cont ent
</ Dl V>
</ Dl V>
</ Dl V>

<Dl V CLASS="pageEntryRi ght">
<Dl V CLASS="pageEntryCol umTitle">Ri ght Colum Title Here</DIV>
<Dl V CLASS="popupEntryWite">
<Dl V CLASS="pageEntryContent">
Ri ght Col um Cont ent
</ Dl V>
</ DI V>
</ Dl V>

</ Dl V>

Please follow these guidelines as closely as possible when designing the layout of a WebTool module, maintaining a
consistent user experience with your module relative to the rest of the WebTool is as critical as proper functionality.

4.3. Menus

Alterations to the WebTool menus need to be made in the /lib/WebTool/Ul/Std.pm library. Currently the menu is hardcoded
in this library, as part of the make_page_menu function.

4.4. Module Configuration Files

If your module needs to save information about itself, such as preferences, a file can be created in the /webtoold subdirectory
of the main webtool directory. An example of this can be found in the source code to the backup module, which keeps
preferences stored in a backup.conf file in that directory..

4.5. Sample Module

I've written an extremely basic sample module in the Hello World vein for aspiring module authors to examine and dissect.
Download the tarball from the link below, and copy it to your WebTool modules directory. Extract it by typing tar xvfz webtool-
module-sample-<version>.tar.gz and then access it by entering https://yourhost:1023/modules/sample/ in your browser’s
address bar after logging in to the WebTool.

This basic sample module can be useful in understanding the necessary pieces of a WebTool module and how they inter-
relate in a simplified way. It can be used as a convenient starting point when writing your own modules as well.

ftp://ftp.engardelinux.org/pub/engarde/people/pax/webtool-module-sample/

12 WebTool Hacking HOWTO

Appendix A. Resources

This is a list of valuable online resources for WebTool developers.

- EnGarde Users Mailing List - The EnGarde users mailing list is an excellent place to ask questions about EnGarde
Secure Linux and WebTool development. The developers of the WebTool and its API are active contributors to the list.

http://infocenter.guardiandigital.com/community/

« EnGarde Secure Linux wiki - This wiki is a community developed document repository for EnGarde Secure Linux
documentation, and is where the most recent versions of this document, as well as many other useful EnGarde Secure
Linux documents, can be found.

http://wiki.engardelinux.org/

- EnGarde Secure Linux IRC channel - EnGarde friends are welcome to come chat on the EnGarde Secure Linux IRC
channel. To chat, join the #engarde channel on irc.freenode.net.

« HTML::Template - This is the home site for the HTML::Template library used by the WebTool. A good understanding of
how this library works is critical to creating the layout of WebTool modules.

http://html-template.sourceforge.net/

13

Appendix A. Resources

14 WebTool Hacking HOWTO

	WebTool Hacking HOWTO
	Table of Contents
	Chapter 1. Introduction
	1.1. About the Guardian Digital WebTool
	1.2. Requirements

	Chapter 2. The WebTool API
	2.1. Reading and Writing Files
	2.2. Writing to the WebTool Audit Log
	2.3. Page Output Functions
	2.3.1. HTML Widget Functions
	2.3.2. Templating Functions
	2.3.3. Error Functions

	2.4. Performing Translations
	2.5. Loading Other Module Libraries
	2.5.1. Stopping and Starting Services
	2.5.2. User Account Manipulation

	Chapter 3. Module Components
	3.1. Module Library
	3.2. CGI Scripts
	3.2.1. Display CGI Scripts
	3.2.2. Popup CGI Scripts
	3.2.3. Action CGI Scripts

	3.3. Templates
	3.4. Language Files
	3.5. Access Control Files

	Chapter 4. Notes For Module Authors
	4.1. Writing New Modules
	4.2. Style Sheets
	4.3. Menus
	4.4. Module Configuration Files
	4.5. Sample Module

	Appendix A. Resources

